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First-order phase transition in a nonequilibrium growth process

Lorenzo Giada and Matteo Marsili
INFM, Trieste-SISSA Unit, Via Beirut 2-4, Trieste I-34014, Italy

and International School for Advanced Studies (SISSA/ISAS), Via Beirut 2-4, Trieste I-34014, Italy
~Received 25 May 2000!

We introduce a simple continuous model for nonequilibrium surface growth. The dynamics of the system is
defined by the Kardar-Parisi-Zhang equation with a Morse-like potential representing a short range interaction
between the surface and the substrate. The mean field solution displays a nontrivial phase diagram with a
first-order transition between a growing and a bound surface, associated with a region of coexisting phases, and
a tricritical point where the transition becomes second order. Numerical simulations in three dimensions show
quantitative agreement with mean field results, and the features of the phase space are preserved even in two
dimensions.

PACS number~s!: 05.65.1b, 68.45.2v
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I. INTRODUCTION

Recently Hinrichsenet al. @1# have introduced a discret
model for nonequilibrium surface growth that displays
first-order unbinding transition in a region of the parame
space where there is phase coexistence between a gro
and a bound surface. They used a restricted solid on s
dynamics, and distinguished the probability of adsorption
particles at the substrate from that at higher layers. This i
order to take into account short range interactions betw
the substrate and the surface.

In the same spirit we study a continuum growth model
an interface interacting with a substrate through a short ra
attractive potential. The interface separates a solid from
vapor phase, and is driven by a difference in chemical
tential due, for example, to a flux of incoming particles, as
molecular beam epitaxy. For small values of the drivi
force the interface remains close to the substrate, fluctua
around some average fixed position; as the driving force
creases, the interface’s average position moves further f
the substrate and eventually starts growing indefinitely
cording to Kardar-Parisi-Zhang~KPZ! @2# dynamics. We
will focus on the nature of the transition from a bound to
moving phase. We resort to numerical simulations and t
mean field approach introduced in@3# for the KPZ equation.

A similar unbinding process of a surface from a wall h
been studied by Mun˜oz and Hwa@4#. They considered a KPZ
@2# equation to which they added strictly attractive or rep
sive interactions, and identified a second-order unbind
transition for which they calculated some critical exponen

We will show how the short range attractive potent
changes the nature of the phase transition, which beco
first order for an entire range of values of the parameter
the model. The second-order transition is recovered only
larger values of the noise, or in the case of a very sh
ranged potential, but the critical exponent is still differe
from that of the simple repulsive wall case.

Our model is an example of a continuous nonequilibriu
system with noise. In the context of noise induced ph
transitions@5# this kind of system has been studied by V
den Broecket al. @6,7#, who showed that multiplicative nois
is essential for the transition to take place, since it can trig
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instabilities in the short time dynamics of the system. On
other hand, systems with multiplicative noise are charac
ized by a transition to an absorbing phase@8#, a state from
which the system cannot escape, characterized by a
value of the order parameter. The phase diagram of this c
of system has been extensively studied in recent ye
@9–11#. Most of this work was concerned with second-ord
transitions, but an example of first order was studied by M¨l-
ler et al. @12# with the help of mean field techniques an
numerical simulations.

II. MODEL

By the termsurfacewe identify the interface between th
solid and vapor phases of some substance. In what foll
we want to give a statistical physics account of the effects
the interactions that may take place between the vapor
ticles as they are depositing on some kind of substrate,
the substrate itself.

First of all, notice that from the point of view of the
surface any interaction that prevents the incoming partic
from getting close to the substrate~repulsion! is experienced
as attractive, since it also prevents the growth of the surf
itself. This ambiguity comes from the fact that we are mixi
a microscopic~particle! description of the system and
‘‘coarse grained’’ concept such as the interface’s dynam
We will try to avoid any confusion by focusing only on th
latter description and terminology.

In our model the system is described by a height fi
h(x) defined on ad-dimensional continuous substrate, whic
evolves according to a Langevin equation of the KPZ ty
The latter is chosen in order to have a system out of equ
rium.

The Langevin equation for the fieldh(x) is obtained in
the usual way:

] th~ t !5D@¹2h2~¹h!2#1r 2
dV@h#

]h
1sh, ~1!

whereD is some diffusion coefficient,r is the driving force
due to the incoming particles, and the nonlinear term (¹h)2

characterizes the nonequilibrium KPZ-like@2# dynamics, and
6015 ©2000 The American Physical Society
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6016 PRE 62LORENZO GIADA AND MATTEO MARSILI
allows for the growth along the direction normal to tilte
areas of the surface. This term breaks the up-down symm
of the system and therefore defines a preferential direc
for growth ~see, e.g.,@13#!. The field h(x,t) is a white
Gaussian noise with the following properties:

^h~x,t !&50,

^h~x,t !h~x8,t8!&5d~x2x8!d~ t2t8!. ~2!

We model the interaction of the substrate with the surf
by introducing a potentialV@h# which has the shape of th
Morse potential~see Fig. 1!:

VM@h#5A~12e2bhebh0!2, ~3!

whereA is the depth of the well,b the hardness of the lowe
wall that mimics the substrate, andh0 the position of the
local minimum, which can be set to 0 without loss of gen
ality. Note that the driving forcer can be included in the
potential as a term linear in the height field:2rh(x). The
parameterr is the essential one: if it is negative the shape
V is a well with an exponential wall on the small-h side,
whereas if it is positive the minimum close to the repelli
wall is only a local one~Fig. 1!. Particles incoming from
above in this case have to cross a potential barrier~i.e., the
local maximum ofV) in order to arrive close to the substrat
This repulsion experienced by the particles prevents
growth of the height of deposited particles. Physically t
term has a precise meaning, since it is due to the differe
in chemical potential between the solid and vapor pha
and determines a drive of the interface toward higher
lower height values, depending on its sign.

In the dynamics of growing surfaces this term is usua
eliminated via the transformationh→h2rt , which corre-
sponds to viewing the system from a moving referen
frame. As one can see the potential in Eq.~3! is not invariant
for such a transformation, nor for the more general oneh
→h1dh. Notice that the KPZ equation is invariant for bo
these transformations. In the present case the consequen
that we can uniquely define the mean position of the surf

FIG. 1. Morse potential including the driving force2rh.
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with respect to the substrate, and its state of motion. I
therefore meaningful to study the unbinding of the surfa
from the substrate.

By inserting the Morse potential one obtains

] th~ t !5r 12bA~e22bh2e2bh!1D@¹2h2~¹h!2#1sh.

~4!

By performing a Hopf-Cole transformationc5e2h we map
Eq. ~4! into a Langevin equation with multiplicative noise
this suggests to us the order parameter to be used in
search for a phase transition, namely, the spatial averag
c, m[^c&:

] tc~ t !52rc22b@c2b112cb11#1¹2c1sch. ~5!

Notice that we have used the Stratonovich calculus in do
the transformation, and we have been able to setA and D
equal to 1 via a suitable rescaling of space and time.

Qualitatively we can have two possible situations in t
long time limit of the stationary solution of the equatio
Either m→0, which corresponds to a diverging value of^h&,
i.e., to a moving~growing! surface; ormÞ0, corresponding
to the surface remaining close to the substrate at some fi
average height. The transition between the two phase
controlled by the parameterr: as one can see from Eq.~4!,
for large negative values ofr the surface is pushed dow
against the substrate, whereas for large positive values
surface is pulled away from it. It is the balance between
force r and the attraction from the exponential walle22bh

that determines the equilibrium position of the surface. N
tice finally that in the language of multiplicative noise sy
tems the state withm50 is the absorbing one, since th
surface can never invert its average velocity and go b
toward the substrate.

An equation similar to~5! was studied by Mun˜oz and
Hwa in @4# in the context of multiplicative noise processe
The system had a soft lower repulsive wall represented b
term 2pcp11 in the Langevin equation, the hard wall lim
corresponding top→`:

] tc5¹2c1rc2pc p111csh. ~6!

These authors found a second-order phase transition betw
a bound and a moving phase. From scaling arguments,
exponent that controls the vanishing of the order param
close to the transition is found to beb r5(22z)/(2z22),
wherez is the KPZ dynamical exponent. Numerical simul
tions confirmed this result.

III. MEAN FIELD APPROXIMATION

To proceed further with the analytical solution of th
model we notice that dimensional analysis performed on
~5! along the lines of@9# shows that the upper critical dimen
sion for the depinning transition is 2. This means that me
field results should be correct in three dimensions and p
vide a reasonable estimate~up to logarithmic corrections! in
two dimensions, i.e., for real surfaces.

First of all we perform a discretization in space, by inse
ing a ~hyper!cubic lattice, and define the variablesc(x,t)
→c(xi ,t)[c i(t). The discretized Laplacian is
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¹2c i5
1

d (
j Pnn~ i !

~c j2c i !, ~7!

where the sum runs over the nearest neighbor of the sii.
The mean field approximation we are going to use cons
@3,11# in the following expression for the discretized Lapla
ian:

1

d (
j Pnn~ i !

~c j2c i !.^c&2c i . ~8!

This is equivalent to saying that the number of dimension
very large, or that the number of neighbors~coordination of
the lattice! is infinite, or again that the interaction is of infi
nite range. Equation~5! then becomes

] tc i~ t !52~r 11!c i22b@c i
2b112c i

b11#1^c&1sc ih i ,

~9!

from which, going back to the fieldh, the discretized version
of Eq. ~4! becomes

] thi~ t !5~r 11!12be2bhi~e2bhi21!2^e2h&ehi1sh i .

~10!

The phase transition

We obtain the probability distribution of the stationa
solution of Eq.~10! by solving the associated Fokker-Plan
equation. The stationary solution is

Pst~h!5Ne22Veff~h!/s2
,

whereN is the normalization factor, and the effective pote
tial in the present case is

Veff~h!52~r 11!h1e22bh22e2bh1^e2h&eh. ~11!

This expression for the probability distribution depends
the value of the order parameter, which must be determi
self-consistently. We have to solve therefore the followi
mean field equation:

m5^e2h&5E e2hPst~h!dh[F~m!5
gJ~m!

gJ21~m!
, ~12!

gj~m![E
2`

`

dh e2~ j 11!he2~2/s2!e22bh
e~4/s2!e2bh

3e2~2m/s2!eh
, ~13!

whereJ522(r 11)/s2.
Plotting m andF(m) on the same graph, it is easy to s

that Eq. ~12! can have one, two, or three solutions inm,
according to the value ofr. The possible situations are rep
resented in Fig. 2. The stability of the solutions can be
vestigated by making use of the results of Shiino@14#,
namely, the solution can be stable only whenF(m) crosses
the linem from above. In our case we have that forr larger
than somer c2

the only solution~therefore a stable one! is

m50; for r below some value that will be determined in
moment, there are only two solutions, the stable one be
ts

is

-

n
d

-

g

mÞ0; finally, for intermediate values ofr there are three
solutions, two of which look stable. Notice thatm50 always
remains a solution; it becomes stable only whenr reaches the
value for whichF8(m50)51. This value is found analyti-
cally to ber c5s2/2. This number is also the lowest value
r for which three solutions exist.

The situation just described represents a typical case
first-order phase transition, and is the same as found in@12#.
The value of the order parameterm remains different from
zero as long as this is the only stable solution. Then for
.r c there is a coexistence region, where two phases
stable, and the final state of the system is determined by
initial conditions. Finally, there is the valuer 5r c2

above
which the order parameter can be only zero. If we recall
definition of m we understand that this phase transition c
responds to the unbinding of the surface from the substr
since ^e2h&→0 means^h&→`. We remark that with the
term coexistence we do not mean that both phases
present at the same time, rather that depending on the in
conditions both are possible stationary states of the sys
In Fig. 3 is shown an example of this phenomenon. In
coexistence region an interface that is initially close to
substrate will remain bounded to it, whereas if the interfa
is initially far it will move further away from the substrat
with a velocityv.0.

The moving phase

It is also possible to determine the velocity of the surfa
when it is away from the substrate. To do this we define
field f i(t) for the fluctuations ofh around its mean position
f i(t)5hi(t)2vt. Herev is the mean velocity of the surfac
obtained from Eq.~10!:

v5] t^hi&5r 112^e2h&^eh&,

where we can neglect the exponential terms in the poten
since they are vanishingly small in the moving phase. T
field f i(t) obeys in this phase the following Langev
equation:

FIG. 2. Graphical solution of the self-consistency equation
b51, s50.4.
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] tf i5] thi2v5~r 112v !2^e2h&ehi1sh i .

The stationary probability distribution from the associat
Fokker-Planck equation is as usual~see, e.g.,@15#!

Pst~f!5Ne22Veff~f!/s2
5Neaf2gef

, ~14!

with a5(2/s2)(r 112v) and g5(2/s2)^e2f&. The self-
consistency relation for̂e2h& is

^e2h&5g
1

a21
,

from which we have thatv5r 2s2/2. The conditionv.0
shows thatr c5s2/2, as anticipated. In the next section w
will see that, for large values of the noise strengths and of
b, the unbinding transition becomes second order. In
part of the phase diagram we can define in the vicinity of
transition a velocity critical exponentu @13#: v;(r 2r c)

u.
From the previous discussion we see thatu51.

IV. NUMERICAL FINDINGS

To study further the phase diagram of the model in me
field approximation we solved Eq.~12! numerically. In par-
ticular, we have determined the valuer c* for which its two
nonzero solutions coalesce with the null one. Analytica
this point corresponds to a negative second derivative
F(m) at the critical pointr c . In Figs. 4 and 5 are shown tw
typical cuts of the phase diagram at fixed values of the c
trol parameterss and b, respectively. One can see that,
the value of one of the parameters increases while the o
remains fixed, the coexistence region becomes smaller,
eventually disappears for someb* (s) or s* (b). At the
same time the unbinding transition becomes second or
thus defining a line of tricritical points in the phase diagra
~s,b! of the system. A numerical estimate of the exponentb r
governing the transition~see, e.g.,@11#! reveals that, at leas
for large values ofb, we have

FIG. 3. Hysteresis curve obtained from mean field~MF! and
two-dimensional~2-d! simulations atb51 ands50.8. Hereclose
anddistantindicate the initial position of the surface with respect
the substrate.
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m;ur 2r cubr;ur 2r cu2s2/2. ~15!

This can be checked analytically by taking the limit f
b→` at the critical point in Eq.~12!. The condition to have
a second-order transition is thatF9(m50),0 at r c ; in this
case there can be no coexistence region, sincer c2

5r c . With
the same notation of Eq.~12! we have

F8~m!52
2

s2 S 12
gJgJ22

gJ21
2 D , ~16!

F9~m!5S 2

s2D 2F2
gJ22

gJ21
2

gJgJ23

gJ21
2 12

gJgJ22
2

gJ21
3 G . ~17!

FIG. 4. The mean field phase diagram for fixeds51. The con-
tinuous line corresponding tor c5s2/2 merges with the dotted line
r c2

at the tricritical point~3!. For largerb the transition is second
order ~dashed line!.

FIG. 5. The mean field phase diagram forb51. The continuous
line corresponding tor c5s2/2 merges with the dotted liner c2

at
the tricritical point~1!. For largers the transition is second orde
~dashed line!.
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Then we make the change of variablex52m/s2eh, to get

gj~m!5S 2m

s2 D j 11E
2m/s2

`

dx x2~ j 12!e2x

5S 2m

s2 D j 11FG~2 j 21!2E
0

2m/s2

dx x2~ j 12!e2xG ,
whereG(x) is the gamma Euler function. Since we are loo
ing for a second-order transition, we need to estimate
small-m limit of gj (m). Therefore we can expande2x in the
integral, and solve it explicitly to any order inm. At the
critical point r c5s2/2 we find that

F9~m!52
2/s211

G~2/s211! S 2m

s2 D 2/s221

,0,

which means that the transition is always second orde
largeb, and that them expansion ofF(m) close to the criti-
cal point can be written as

F~m!5~11dr !m1Cm2/s211,

wheredr 5r c2r andC is some constant. Solving the mea
field equationF(m)2m50 gives

m;~dr !s2/2, ~18!

in agreement with the numerical value.
We note that the last calculation can be repeated for

model of@4#, Eq. ~6!, to give the same result, thus implyin
that in the mean field limit of a system with a hard wall t
phase transition is governed by a continuous exponent
our knowledge this finding has not previously been report
A different value for theb r exponent, namely,b r51/p, is
given in @11#, where the mean field approximation Eq.~8! is
also compared with different results from field theoretic
calculations (b r51). However, it is not clear whether th
hard wall limit can be obtained from the aforemention
calculations.

FIG. 6. The relation betweenb* ands* in a log-log plot.
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e
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Another feature of the phase diagram is that in the limit
small s we found thatr c2→b/2, but we were unable to
derive this result analytically from Eq.~12!.

We checked if there is any functional relation betweenb*
ands* . Figure 6 shows a log-log plot of the tricritical point
together with the linear fit. The value of the slope is in th
case about24, which means thatb* ;s* 24 or that b*
;r c*

22. Notice, however, that this linear fit is a fairly poo
approximation, and there is no reason why we should exp
a priori any simple functional relation between these tw
quantities.

We have also checked with simulations on a finite num
of sites that these results are the same as those obtained
Eq. ~10!. With the help of these simulations we could s
that hysteresis associated with the first-order transition
the coexistence region does indeed occur.

V. RESULTS IN FINITE DIMENSIONS

To perform numerical simulation of Eq.~4! in finite di-
mensions we introduced as usual a~hyper!cubic lattice on
the space of coordinates, and used for the discretized Lap
ian the expression in Eq.~7!. Going back to theh field we
obtained the following Langevin equation on a lattice:

] thi5r 1112be2bhi~e2bhi21!2ehi
1

d (
j Pnn~ i !

e2hj1sh i .

~19!

To have better accuracy we chose to apply the Heun me
for solving stochastic differential equations~see, e.g.,
@16,17#!. We ran the simulations long enough for the syste
to reach its stationary state, and then measured the o
parameter at intervals larger than some estimated autoc
lation time. The results from three-dimensional simulatio
are in qualitative agreement with the mean field analy
thus confirming that the upper critical dimension for th
class of systems is 2.

FIG. 7. A cut of the phase diagram for the two-dimension
system at fixedb51. Closeanddistant indicate the initial position
of the surface with respect to the substrate.
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It is now interesting to see how this analysis is modifi
in the two-dimensional case, the physical one, when in
renormalization group sense only logarithmic corrections
expected. We simulated systems on a square lattice with
ear sizeL up to 60. A cut of the phase space is shown in F
7. It is easily seen that the main features of the phase
gram remain unaltered in two dimensions; namely, we
still identify a first-order phase transition with a coexisten
region where the system displays hysteresis~Fig. 3!, and a
crossover to a second-order transition for large values of
noise.

Similar results are obtained even in one dimension
must be noted that the coexistence region becomes small
one goes to low dimensionality, but it is still present.

VI. DISCUSSION AND CONCLUSIONS

In a sense the combined effect of the attracting poten
and the noise is similar to that of a superposition of quenc
and thermal noise~cf. @13#!; namely, in both situations we
have a force opposing the growth that depends on the he
of the surface, and a noise term that randomly modula
such interaction in time and space. This is why we can
the quenched noise terminology and define, e.g., the velo
v.
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exponent. Of course it is the attractive nature of the Mo
potential that gives the transition its first-order character, a
we expect similar results for other short range attractive
tentials as well.

We have shown how a simple modification of the nonl
ear part of the KPZ equation can describe the dynamics
surface that interacts with the substrate via a short ra
interaction. The mean field analysis has revealed that a fi
order unbinding transition takes place for a large range of
control parameters, and that in the whole region of the ph
diagram the system’s stationary position depends on the
tial conditions ~hysteresis!. Furthermore, a crossover to
second-order transition takes place for large values of
control parameters, and the exponent controlling the van
ing of the order parameter depends continuously on
strength of the noise. The same situation is recovered
simulations above and below the upper critical dimens
dc52.
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@9# G. Grinstein, M. A. Muñoz, and Y. Tu, Phys. Rev. Lett.76,
4376 ~1996!.

@10# Y. Tu, G. Grinstein, and M. A. Mun˜oz, Phys. Rev. Lett.78,
274 ~1997!.

@11# W. Genovese and M. A. Mun˜oz, Phys. Rev. E60, 69 ~1999!.
@12# R. Müller, K. Lippert, A. Kühnel, and U. Behn, Phys. Rev. E

56, 2658~1997!.
@13# A. L. Barabási and H. E. Stanley,Fractal Concepts in Surface

Growth ~Cambridge University Press, Cambridge, Englan
1995!.

@14# M. Shiino, Phys. Rev. A36, 2393~1987!.
@15# C. W. Gardiner,Handbook of Stochastic Methods~Springer-

Verlag, Berlin, 1985!.
@16# P. E. Kloeden and E. Platen,Numerical Solution of Stochastic

Differential Equations~Springer-Verlag, Berlin, 1992!.
@17# M. San Miguel and R. Toral, inInstabilities and Non-

Equilibrium Structures VI, edited by E. Tirapegui and W
Zeller ~Kluwer Academic Pub., Dordrecht, 1997!.


