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First-order phase transition in a nonequilibrium growth process
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We introduce a simple continuous model for nonequilibrium surface growth. The dynamics of the system is
defined by the Kardar-Parisi-Zhang equation with a Morse-like potential representing a short range interaction
between the surface and the substrate. The mean field solution displays a nontrivial phase diagram with a
first-order transition between a growing and a bound surface, associated with a region of coexisting phases, and
a tricritical point where the transition becomes second order. Numerical simulations in three dimensions show
gquantitative agreement with mean field results, and the features of the phase space are preserved even in two
dimensions.

PACS numbd(s): 05.65+b, 68.45-v

[. INTRODUCTION instabilities in the short time dynamics of the system. On the
other hand, systems with multiplicative noise are character-

Recently Hinrichseret al. [1] have introduced a discrete ized by a transition to an absorbing phdsé a state from
model for nonequilibrium surface growth that displays awhich the system cannot escape, characterized by a null
first-order unbinding transition in a region of the parametervalue of the order parameter. The phase diagram of this class
space where there is phase coexistence between a growifl§j System has been extensively studied in recent years
and a bound surface. They used a restricted solid on solitP—11]. Most of this work was concerned with second-order
dynamics, and distinguished the probability of adsorption ofransitions, but an example of first order was studied by-Mu
particles at the substrate from that at higher layers. This is ife" et al. [12] with the help of mean field techniques and
order to take into account short range interactions betweefumerical simulations.
the substrate and the surface.

In the same spirit we study a continuum growth model for Il. MODEL
an interface interacting with a substrate through a short range ) ) )
attractive potential. The interface separates a solid from a BY the termsurfacewe identify the interface between the
vapor phase, and is driven by a difference in chemical po_solld and vapor phasgs_of some substance. In what follows
tential due, for example, to a flux of incoming particles, as inWeé \{vant to give a statistical physics account of the effects of
molecular beam epitaxy. For small values of the drivingth€ interactions that may take place between the vapor par-
force the interface remains close to the substrate, fluctuating'es as they are depositing on some kind of substrate, and
around some average fixed position; as the driving force in{Ne Substrate itself. _ _
creases, the interface’s average position moves further from First of all, notice that from the point of view of the
the substrate and eventually starts growing indefinitely acSurface any interaction that prevents the incoming particles
cording to Kardar-Parisi-ZhangKPZ) [2] dynamics. We from gettl_ng clqse t(_) the substrat@pulsior) is experienced
will focus on the nature of the transition from a bound to a@S attractive, since it also prevents the growth of the surface
moving phase. We resort to numerical simulations and to #Self. This ambiguity comes from the fact that we are mixing
mean field approach introduced i8] for the KPZ equation. @ Microscopic(particle description of the system and a

A similar unbinding process of a surface from a wall has c0arse grained” concept such as the interface’s dynamics.
been studied by Mioe and Hwd4]. They considered a KPZ We will try fco _av0|d any cqnfusmn by focusing only on the
[2] equation to which they added strictly attractive or repul-attér description and terminology. _ _
sive interactions, and identified a second-order unbindin% In our model the system is described by a height field
transition for which they calculated some critical exponentsn(X) defined on a-dimensional continuous substrate, which

We will show how the short range attractive potential €v0lves according to a Langevin equation of the KPZ type.
changes the nature of the phase transition, which becomé@"e latter is chosen in order to have a system out of equilib-
first order for an entire range of values of the parameters oftum- _ _ _ _ o
the model. The second-order transition is recovered only for The Langevin equation for the field(x) is obtained in
larger values of the noise, or in the case of a very shorthe usual way:
ranged potential, but the critical exponent is still different
from that of the simple repulsive wall case.

Our model is an example of a continuous nonequilibrium
system with noise. In the context of noise induced phase
transitions[ 5] this kind of system has been studied by VanwhereD is some diffusion coefficient, is the driving force
den Broeclet al.[6,7], who showed that multiplicative noise due to the incoming particles, and the nonlinear tefrh)?
is essential for the transition to take place, since it can triggecharacterizes the nonequilibrium KPZ-likg] dynamics, and

SV[h]
ath(t)=D[V2h—(Vh)2]+r—T-FO’?], (1)
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2 . with respect to the substrate, and its state of motion. It is
therefore meaningful to study the unbinding of the surface
from the substrate.

By inserting the Morse potential one obtains

dh(t)=r+2BA(e ?"—e A"+ D[V?h—(Vh)?]+o7.
(4)

By performing a Hopf-Cole transformatiogh=e™ " we map

Eg. (4) into a Langevin equation with multiplicative noise;
this suggests to us the order parameter to be used in the
search for a phase transition, namely, the spatial average of

i, m=(4):
dp(t)=—rih=2B[Y*P 1= yP N+ V2ytoyn. (5)

) 1 0 1 2 3 4 5 6 Notice that we have used the Stratonovich calculus in doing
h the transformation, and we have been able toAseind D

equal to 1 via a suitable rescaling of space and time.
Qualitatively we can have two possible situations in the

long time limit of the stationary solution of the equation.

Eitherm— 0, which corresponds to a diverging value(bf,

riYe., to a moving(growing surface; om0, corresponding

tb the surface remaining close to the substrate at some finite

average height. The transition between the two phases is

controlled by the parameter as one can see from E),

for large negative values af the surface is pushed down

h

FIG. 1. Morse potential including the driving forcerh.

allows for the growth along the direction normal to tilted
areas of the surface. This term breaks the up-down symmet
of the system and therefore defines a preferential directio
for growth (see, e.g.[13]). The field »(x,t) is a white
Gaussian noise with the following properties:

{n(x.))=0, against the substrate, whereas for large positive values the
R , , surface is pulled away from it. It is the balance between the
{(7(x.Hn(x", ")) =8(x=x") §(t=t"). @ force r and the attraction from the exponential walf 4"

that determines the equilibrium position of the surface. No-
Sice finally that in the language of multiplicative noise sys-
tems the state wittm=0 is the absorbing one, since the
surface can never invert its average velocity and go back
toward the substrate.

An equation similar to(5) was studied by Muoz and
Hwa in [4] in the context of multiplicative noise processes.
The system had a soft lower repulsive wall represented by a
term —pyP* ! in the Langevin equation, the hard wall limit
corresponding t@—:

We model the interaction of the substrate with the surfac
by introducing a potentiaV/[ h] which has the shape of the
Morse potentialsee Fig. L

Viulh]=A(1—e #hefo)? ©)

whereA is the depth of the well3 the hardness of the lower
wall that mimics the substrate, arigy the position of the
local minimum, which can be set to 0 without loss of gener-
ality. Note that the driving force can be included in the
potential as a term linear in the height fieleirh(x). The _v2 ., PtL

parameter is the essential one: if it is negative the shape of RI=VAH =Py =t Y. ©

V is a well with an exponential wall on the smallside,  These authors found a second-order phase transition between
whereas if it is pOSitive the minimum close to the repellinga bound and a moving phase_ From Sca”ng argumentS, the
wall is only a local one(Fig. 1). Particles incoming from  exponent that controls the vanishing of the order parameter
above in this case have to cross a potential baftier, the  close to the transition is found to h& =(2—2)/(2z—2),

local maximum ofV) in order to arrive close to the substrate. wherez is the KPZ dynamical exponent. Numerical simula-
This repulsion experienced by the particles prevents th@ons confirmed this result.

growth of the height of deposited particles. Physically this

term has a precise meaning, since it is due to the difference

in chemical potential between the solid and vapor phases,

and determines a drive of the interface toward higher or To proceed further with the analytical solution of the

lower height values, depending on its sign. model we notice that dimensional analysis performed on Eq.
In the dynamics of growing surfaces this term is usually(5) along the lines of9] shows that the upper critical dimen-

eliminated via the transformatioh—h—rt, which corre- sion for the depinning transition is 2. This means that mean

sponds to viewing the system from a moving referencdield results should be correct in three dimensions and pro-

frame. As one can see the potential in E8).is not invariant  vide a reasonable estimatep to logarithmic correctionsn

for such a transformation, nor for the more general bne two dimensions, i.e., for real surfaces.

—h+ 8h. Notice that the KPZ equation is invariant for both  First of all we perform a discretization in space, by insert-

these transformations. In the present case the consequencerig a (hypencubic lattice, and define the variablggx,t)

that we can uniquely define the mean position of the surface- (x; ,t)=;(t). The discretized Laplacian is

IlI. MEAN FIELD APPROXIMATION
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1 1.25
Vzl//i:a_ 2 (=), (7)
jenn(i)
where the sum runs over the nearest neighbor of thei.site T = - ]
The mean field approximation we are going to use consists /,/‘/ /,/”'_
[3,11] in the following expression for the discretized Laplac- 7 ST e
ian: 0.75 | g A 1
—_ /’ "~ T
.7 Rl v | Y
g 2 W)=t (8) 05| Ve ]
jenn(i) .
/ L o =0
This is equivalent to saying that the number of dimensions is //
very large, or that the number of neighbdc®ordination of 0.25 1 Ry ]
the lattice is infinite, or again that the interaction is of infi- Ny
nite range. Equatiolb) then becomes . | | | |
0 0.25 0.5 0.75 1 1.25
() == (r+ 1) =2B[ Y=yl T+ () + o, m
©) FIG. 2. Graphical solution of the self-consistency equation for
B=1,0=0.4.

from which, going back to the fielld, the discretized version

of Eqg. (4) becomes . _ _
m#0; finally, for intermediate values af there are three

ahi()=(r+1)+2Be Ai(e Pi—1)—(e e+ o, solutions, two of which look stable. Notice that=0 always
(10) remains a solution; it becomes stable only wheeaches the
value for whichF'(m=0)=1. This value is found analyti-
cally to ber .= ¢?/2. This number is also the lowest value of
r for which three solutions exist.
We obtain the probability distribution of the stationary  The situation just described represents a typical case of
solution of Eq.(10) by solving the associated Fokker-Planck first-order phase transition, and is the same as fouriddh

The phase transition

equation. The stationary solution is The value of the order parameter remains different from
aVohylo? zero as long as this is the only stable solution. Thenrfor
Psi(h)=Ne™“YertWie, >r. there is a coexistence region, where two phases are

stable, and the final state of the system is determined by the
initial conditions. Finally, there is the value=r., above

which the order parameter can be only zero. If we recall the
Ver(h)= — (1 + 1)h+ef2ﬁh_Zefﬁh+<e*h>eh, (11) definition of m we understand that this phase transition cor-
responds to the unbinding of the surface from the substrate,
This expression for the probability distribution depends onsince (e ")—0 means(h)—®. We remark that with the
the value of the order parameter, which must be determinegerm coexistence we do not mean that both phases are
self-consistently. We have to solve therefore the followingpresent at the same time, rather that depending on the initial
mean field equation: conditions both are possible stationary states of the system.
In Fig. 3 is shown an example of this phenomenon. In the
m:<e—h>:f e "P.(h)dh=F(m)= 9,(m) (12 coexistence region an interface that is initially close to the

where N is the normalization factor, and the effective poten-
tial in the present case is

g;-1(m) substrate will remain bounded to it, whereas if the interface
is initially far it will move further away from the substrate
. (i _ - - i ityv>0.
g,—(m)Ef dh e i+ Dhg- (2le?)e 280 (a52)e#h with a velocityv >0

Xe—(zm/a%eh, (13) The moving phase

It is also possible to determine the velocity of the surface

whereJ=—2(r+1)/o2. when it is away from the substrate. To do this we define a

Plottingm andF(m) on the same graph, it is easy to seefield ¢;(t) for the fluctuations oh around its mean position:
that Eq.(12) can have one, two, or three solutionsrm  ¢,;(t)=h;(t)—vt. Herev is the mean velocity of the surface
according to the value af. The possible situations are rep- obtained from Eq(10):
resented in Fig. 2. The stability of the solutions can be in-
vestigated by making use of the results of Shiifiot], v=ayh)=r+1-(e "\e"),
namely, the solution can be stable only whHefm) crosses
the linem from above. In our case we have that folarger  \yhere we can neglect the exponential terms in the potential,
than somer,, the only solution(therefore a stable oh@s  since they are vanishingly small in the moving phase. The
m=0; for r below some value that will be determined in a field ¢;(t) obeys in this phase the following Langevin
moment, there are only two solutions, the stable one beingquation:
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FIG. 3. Hysteresis curve obtained from mean fiéldF) and FIG. 4. The mean field phase diagram for fixeet 1. The con-

two-dimensional2-d) simulations aj3=1 ando=0.8. Hereclose  tinuous line corresponding tq.= ¢?/2 merges with the dotted line
anddistantindicate the initial position of the surface with respect to r__ at the tricritical point(x). For larger the transition is second
2

the substrate. order (dashed ling

at(ﬁi:&thi_l}:(r+1_U)_<e_h>ehi+0")7i .

m~|r—ro/fr~|r—r "2, (15
The stationary probability distribution from the associated ) ] ] o
Fokker-Planck equation is as usuaee, e.g.[15]) This can be checked analytically by taking the limit for
B—c0 at the critical point in Eq(12). The condition to have
pst(¢):/\/e*ZVeffw)/aZ:Neacbwe‘ﬁ, (14)  a second-order transition is that(m=0)<0 atr.; in this

case there can be no coexistence region, si@zeerc. With

with a=(2/0®)(r+1-v) and y=(2/0*)(e”?). The self-  the same notation of E412) we have

consistency relation fofe ") is

ngJ—Z), (16)

(e M=y—= o di-1

a—1"

shows thatr .= 0?/2, as anticipated. In the next section we O5_1 g§_1 +2 93—1
will see that, for large values of the noise strengtand of

B, the unbinding transition becomes second order. In that
part of the phase diagram we can define in the vicinity of the ¥
transition a velocity critical exponer [13]: v~ (r—r.)". /
From the previous discussion we see thatl. 81

from which we have thab=r—o?/2. The conditionv>0 , 2\ gs2 9uGrs 9952
Friim=|—] | - - . (17

IV. NUMERICAL FINDINGS 251

To study further the phase diagram of the model in mean
field approximation we solved Eq12) numerically. In par-
ticular, we have determined the valug for which its two
nonzero solutions coalesce with the null one. Analytically Movi

. . . 7 oving Phase
this point corresponds to a negative second derivative ol
F(m) at the critical point .. In Figs. 4 and 5 are shown two
typical cuts of the phase diagram at fixed values of the con- [ 7 ’
trol parametersr and B, respectively. One can see that, as 05 — "
the value of one of the parameters increases while the othe
remains fixed, the coexistence region becomes smaller, an ¢ w
eventually disappears for som@ (o) or o*(B). At the 0 0.5 1 15 2 25
same time the unbinding transition becomes second order, °
thus defining a line of tricritical points in the phase diagram FIG. 5. The mean field phase diagram fo+ 1. The continuous
(o,B) of the system. A numerical estimate of the expongnt line corresponding to .= o?/2 merges with the dotted line;, at

governing the transitiofsee, e.g.[11]) reveals that, at least the tricritical point(+). For largeres the transition is second order
for large values of3, we have (dashed ling

—

Pinned Phase
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FIG. 7. A cut of the phase diagram for the two-dimensional
system at fixeg3=1. Closeanddistantindicate the initial position
of the surface with respect to the substrate.

FIG. 6. The relation betweeg* ando™* in a log-log plot.

Then we make the change of variable 2m/o2e", to get

Another feature of the phase diagram is that in the limit of
small o we found thatr.,— 8/2, but we were unable to
derive this result analytically from Eq12).

We checked if there is any functional relation betwg#n
ando™ . Figure 6 shows a log-log plot of the tricritical points
together with the linear fit. The value of the slope is in this
case about—4, which means thaB* ~o¢* ~* or that g*

©

2m j+1
sm=(3] ],
)j+l

dx x (iT2eg=x

m/ o2

2m

:(U

2m/ o2 ’
> r(—j—l)—f " dx x (12e x|,
0

wherel'(x) is the gamma Euler function. Since we are look-
ing for a second-order transition, we need to estimate th
smallm limit of g;(m). Therefore we can expared * in the
integral, and solve it explicitly to any order im. At the

e C

~r* 2, Notice, however, that this linear fit is a fairly poor
approximation, and there is no reason why we should expect
a priori any simple functional relation between these two

quantities.

We have also checked with simulations on a finite number
of sites that these results are the same as those obtained from
Eqg. (10). With the help of these simulations we could see
that hysteresis associated with the first-order transition and

the coexistence region does indeed occur.
which means that the transition is always second order at

large B, and that them expansion of-(m) close to the criti-
cal point can be written as

critical pointr .= a?/2 we find that

20621
<0,

2l0%+1
I (2/0?+1)

, 2m
F (m)=— ?

V. RESULTS IN FINITE DIMENSIONS

To perform numerical simulation of Eq4) in finite di-
mensions we introduced as usualhypencubic lattice on
) ) the space of coordinates, and used for the discretized Laplac-
whereér=r.—r andC is some constant. Solving the mean jan the expression in Eq7). Going back to théh field we
field equationF(m) —m=0 gives obtained the following Langevin equation on a lattice:

F(m)=(1+&r)m+Cm 1,

m~ (6r)°°", (18)

athi:r+1+2/3e‘5hi(e‘ﬁhi—1)—ehiE > e Nitoy.
in agreement with the numerical value. jenn(i)

We note that the last calculation can be repeated for the (19)
model of[4], Eq. (6), to give the same result, thus implying
that in the mean field limit of a system with a hard wall the To have better accuracy we chose to apply the Heun method
phase transition is governed by a continuous exponent. Tfor solving stochastic differential equationtsee, e.g.,
our knowledge this finding has not previously been reported;16,17)). We ran the simulations long enough for the system
A different value for theB, exponent, namely3,=1/p, is to reach its stationary state, and then measured the order
given in[11], where the mean field approximation Ef) is  parameter at intervals larger than some estimated autocorre-
also compared with different results from field theoreticallation time. The results from three-dimensional simulations
calculations B,=1). However, it is not clear whether the are in qualitative agreement with the mean field analysis,
hard wall limit can be obtained from the aforementionedthus confirming that the upper critical dimension for this
calculations. class of systems is 2.
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It is now interesting to see how this analysis is modifiedexponent. Of course it is the attractive nature of the Morse
in the two-dimensional case, the physical one, when in th@otential that gives the transition its first-order character, and
renormalization group sense only logarithmic corrections areve expect similar results for other short range attractive po-
expected. We simulated systems on a square lattice with lirntentials as well.
ear sizel up to 60. A cut of the phase space is shown in Fig. We have shown how a simple modification of the nonlin-
7. It is easily seen that the main features of the phase diaar part of the KPZ equation can describe the dynamics of a
gram remain unaltered in two dimensions; namely, we carsurface that interacts with the substrate via a short range
still identify a first-order phase transition with a coexistenceinteraction. The mean field analysis has revealed that a first-
region where the system displays hysterébig. 3), and a  order unbinding transition takes place for a large range of the
crossover to a second-order transition for large values of theontrol parameters, and that in the whole region of the phase
noise. diagram the system'’s stationary position depends on the ini-

Similar results are obtained even in one dimension. Itial conditions (hysteresis Furthermore, a crossover to a
must be noted that the coexistence region becomes smaller sscond-order transition takes place for large values of the

one goes to low dimensionality, but it is still present. control parameters, and the exponent controlling the vanish-
ing of the order parameter depends continuously on the
V1. DISCUSSION AND CONCLUSIONS strength of the noise. The same situation is recovered in

] . ~ simulations above and below the upper critical dimension
In a sense the combined effect of the attracting potentia§j — o

and the noise is similar to that of a superposition of quenched

and thermal noisécf. [13]); namely, in both situations we

have a force opposing the_ growth that depends on the height ACKNOWLEDGMENTS

of the surface, and a noise term that randomly modulates

such interaction in time and space. This is why we can use We acknowledge stimulating discussions with M. A.
the quenched noise terminology and define, e.g., the velocitylunoz, H. Hinrichsen, D. Mukamel, and A. De Martino.
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